ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqcaopr GIF version

Theorem iseqcaopr 9242
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Jim Kingdon, 17-Aug-2021.)
Hypotheses
Ref Expression
iseqcaopr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqcaopr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqcaopr.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqcaopr.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqcaopr.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
iseqcaopr.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
iseqcaopr.7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
iseqcaopr.s (𝜑𝑆𝑉)
Assertion
Ref Expression
iseqcaopr (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Distinct variable groups:   + ,𝑘,𝑥,𝑦,𝑧   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝑀   𝑘,𝑁   𝑆,𝑘,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑘)

Proof of Theorem iseqcaopr
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqcaopr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21caovclg 5653 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3 simpl 102 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝜑)
4 simprrl 491 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑐𝑆)
5 simprlr 490 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑏𝑆)
6 iseqcaopr.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
76caovcomg 5656 . . . . . . 7 ((𝜑 ∧ (𝑐𝑆𝑏𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
83, 4, 5, 7syl12anc 1133 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
98oveq1d 5527 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑))
10 simprrr 492 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑑𝑆)
11 iseqcaopr.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211caovassg 5659 . . . . . 6 ((𝜑 ∧ (𝑐𝑆𝑏𝑆𝑑𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
133, 4, 5, 10, 12syl13anc 1137 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
1411caovassg 5659 . . . . . 6 ((𝜑 ∧ (𝑏𝑆𝑐𝑆𝑑𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
153, 5, 4, 10, 14syl13anc 1137 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
169, 13, 153eqtr3d 2080 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑)))
1716oveq2d 5528 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
18 simprll 489 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑎𝑆)
191caovclg 5653 . . . . 5 ((𝜑 ∧ (𝑏𝑆𝑑𝑆)) → (𝑏 + 𝑑) ∈ 𝑆)
203, 5, 10, 19syl12anc 1133 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑏 + 𝑑) ∈ 𝑆)
2111caovassg 5659 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑐𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
223, 18, 4, 20, 21syl13anc 1137 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
231caovclg 5653 . . . . 5 ((𝜑 ∧ (𝑐𝑆𝑑𝑆)) → (𝑐 + 𝑑) ∈ 𝑆)
2423adantrl 447 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑑) ∈ 𝑆)
2511caovassg 5659 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
263, 18, 5, 24, 25syl13anc 1137 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
2717, 22, 263eqtr4d 2082 . 2 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑)))
28 iseqcaopr.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
29 iseqcaopr.5 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
30 iseqcaopr.6 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
31 iseqcaopr.7 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
32 iseqcaopr.s . 2 (𝜑𝑆𝑉)
332, 2, 27, 28, 29, 30, 31, 32iseqcaopr2 9241 1 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  cfv 4902  (class class class)co 5512  cuz 8473  seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-fzo 9000  df-iseq 9212
This theorem is referenced by:  iseradd  9243
  Copyright terms: Public domain W3C validator