ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz GIF version

Theorem flqeqceilz 9160
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 9126 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 9157 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2075 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 flqcl 9117 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
5 zq 8561 . . . . . 6 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
64, 5syl 14 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
7 qdceq 9102 . . . . 5 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → DECID (⌊‘𝐴) = 𝐴)
86, 7mpancom 399 . . . 4 (𝐴 ∈ ℚ → DECID (⌊‘𝐴) = 𝐴)
9 exmiddc 744 . . . 4 (DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
108, 9syl 14 . . 3 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
11 eqeq1 2046 . . . . . . 7 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
1211adantr 261 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
13 ceilqidz 9158 . . . . . . . . 9 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
14 eqcom 2042 . . . . . . . . 9 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
1513, 14syl6bb 185 . . . . . . . 8 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
1615biimprd 147 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1716adantl 262 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1812, 17sylbid 139 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1918ex 108 . . . 4 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
20 flqle 9120 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
21 df-ne 2206 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
22 necom 2289 . . . . . . 7 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
23 qltlen 8575 . . . . . . . . . . 11 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
246, 23mpancom 399 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
25 breq1 3767 . . . . . . . . . . . . . 14 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2625adantl 262 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
27 ceilqge 9152 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
28 qre 8560 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
29 ceilqcl 9150 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
3029zred 8360 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℝ)
3128, 30lenltd 7134 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
32 pm2.21 547 . . . . . . . . . . . . . . . 16 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3331, 32syl6bi 152 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3427, 33mpd 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3534adantr 261 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3626, 35sylbid 139 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3736ex 108 . . . . . . . . . . 11 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3837com23 72 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3924, 38sylbird 159 . . . . . . . . 9 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4039expd 245 . . . . . . . 8 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4140com3r 73 . . . . . . 7 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4222, 41sylbi 114 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4321, 42sylbir 125 . . . . 5 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4420, 43mpdi 38 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4519, 44jaoi 636 . . 3 (((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4610, 45mpcom 32 . 2 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 131 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  DECID wdc 742   = wceq 1243  wcel 1393  wne 2204   class class class wbr 3764  cfv 4902   < clt 7060  cle 7061  cz 8245  cq 8554  cfl 9112  cceil 9113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-q 8555  df-rp 8584  df-fl 9114  df-ceil 9115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator