ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap GIF version

Theorem expcl2lemap 9267
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lemap.4 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lemap ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lemap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 8259 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 9266 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 108 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 261 . . . 4 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 481 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 2943 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simplr 482 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 # 0)
11 simprl 483 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1211recnd 7054 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
13 nnnn0 8188 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1413ad2antll 460 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
15 expineg2 9264 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
169, 10, 12, 14, 15syl22anc 1136 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
17 ssrab2 3025 . . . . . . . 8 {𝑧𝐹𝑧 # 0} ⊆ 𝐹
18 simpl 102 . . . . . . . . . 10 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 # 0))
19 breq1 3767 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
2019elrab 2698 . . . . . . . . . 10 (𝐴 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝐴𝐹𝐴 # 0))
2118, 20sylibr 137 . . . . . . . . 9 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ {𝑧𝐹𝑧 # 0})
2217, 2sstri 2954 . . . . . . . . . 10 {𝑧𝐹𝑧 # 0} ⊆ ℂ
2317sseli 2941 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → 𝑥𝐹)
2417sseli 2941 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → 𝑦𝐹)
2523, 24, 3syl2an 273 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ 𝐹)
26 breq1 3767 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
2726elrab 2698 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑥𝐹𝑥 # 0))
282sseli 2941 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2928anim1i 323 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 # 0) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
3027, 29sylbi 114 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
31 breq1 3767 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
3231elrab 2698 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑦𝐹𝑦 # 0))
332sseli 2941 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3433anim1i 323 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 # 0) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
3532, 34sylbi 114 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
36 mulap0 7635 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
3730, 35, 36syl2an 273 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) # 0)
38 breq1 3767 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
3938elrab 2698 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) # 0))
4025, 37, 39sylanbrc 394 . . . . . . . . . 10 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0})
41 1ap0 7581 . . . . . . . . . . 11 1 # 0
42 breq1 3767 . . . . . . . . . . . 12 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
4342elrab 2698 . . . . . . . . . . 11 (1 ∈ {𝑧𝐹𝑧 # 0} ↔ (1 ∈ 𝐹 ∧ 1 # 0))
444, 41, 43mpbir2an 849 . . . . . . . . . 10 1 ∈ {𝑧𝐹𝑧 # 0}
4522, 40, 44expcllem 9266 . . . . . . . . 9 ((𝐴 ∈ {𝑧𝐹𝑧 # 0} ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4621, 14, 45syl2anc 391 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4717, 46sseldi 2943 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
48 breq1 3767 . . . . . . . . . 10 (𝑧 = (𝐴↑-𝐵) → (𝑧 # 0 ↔ (𝐴↑-𝐵) # 0))
4948elrab 2698 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5046, 49sylib 127 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5150simprd 107 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) # 0)
52 breq1 3767 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 # 0 ↔ (𝐴↑-𝐵) # 0))
53 oveq2 5520 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
5453eleq1d 2106 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5552, 54imbi12d 223 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 # 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
56 expcl2lemap.4 . . . . . . . . 9 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
5756ex 108 . . . . . . . 8 (𝑥𝐹 → (𝑥 # 0 → (1 / 𝑥) ∈ 𝐹))
5855, 57vtoclga 2619 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5947, 51, 58sylc 56 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
6016, 59eqeltrd 2114 . . . . 5 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
6160ex 108 . . . 4 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
627, 61jaod 637 . . 3 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
631, 62syl5bi 141 . 2 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
64633impia 1101 1 ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  w3a 885   = wceq 1243  wcel 1393  {crab 2310  wss 2917   class class class wbr 3764  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889  1c1 6890   · cmul 6894  -cneg 7183   # cap 7572   / cdiv 7651  cn 7914  0cn0 8181  cz 8245  cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  rpexpcl  9274  reexpclzap  9275  qexpclz  9276  m1expcl2  9277  expclzaplem  9279  1exp  9284
  Copyright terms: Public domain W3C validator