ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem GIF version

Theorem expaddzaplem 9298
Description: Lemma for expaddzap 9299. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 928 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 simp3 906 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 expcl 9273 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
41, 2, 3syl2anc 391 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
5 simp2r 931 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ)
65nnnn0d 8235 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ0)
7 expcl 9273 . . . 4 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
81, 6, 7syl2anc 391 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
9 simp1r 929 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 # 0)
105nnzd 8359 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℤ)
11 expap0i 9287 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0)
121, 9, 10, 11syl3anc 1135 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) # 0)
134, 8, 12divrecap2d 7769 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐴↑-𝑀)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
14 simp2l 930 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
1514recnd 7054 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ)
1615negnegd 7313 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 = 𝑀)
17 nnnegz 8248 . . . . . . . . . 10 (-𝑀 ∈ ℕ → --𝑀 ∈ ℤ)
185, 17syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 ∈ ℤ)
1916, 18eqeltrrd 2115 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
202nn0zd 8358 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2119, 20zaddcld 8364 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
22 expclzap 9280 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
231, 9, 21, 22syl3anc 1135 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
2423adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
258adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
2612adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) # 0)
2724, 25, 26divcanap4d 7771 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = (𝐴↑(𝑀 + 𝑁)))
281adantr 261 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
29 simpr 103 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
306adantr 261 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℕ0)
31 expadd 9297 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑀 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3228, 29, 30, 31syl3anc 1135 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3321zcnd 8361 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
3433, 15negsubd 7328 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
352nn0cnd 8237 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3615, 35pncan2d 7324 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3734, 36eqtrd 2072 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3837adantr 261 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3938oveq2d 5528 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = (𝐴𝑁))
4032, 39eqtr3d 2074 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) = (𝐴𝑁))
4140oveq1d 5527 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
4227, 41eqtr3d 2074 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
431adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
449adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 # 0)
4533adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
46 simpr 103 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
47 expineg2 9264 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4843, 44, 45, 46, 47syl22anc 1136 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4921znegcld 8362 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℤ)
50 expclzap 9280 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -(𝑀 + 𝑁) ∈ ℤ) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
511, 9, 49, 50syl3anc 1135 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
5251adantr 261 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
534adantr 261 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
54 expap0i 9287 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) # 0)
551, 9, 20, 54syl3anc 1135 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) # 0)
5655adantr 261 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) # 0)
5752, 53, 56divcanap4d 7771 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = (𝐴↑-(𝑀 + 𝑁)))
582adantr 261 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
59 expadd 9297 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6043, 46, 58, 59syl3anc 1135 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6115, 35negdi2d 7336 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀𝑁))
6261oveq1d 5527 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = ((-𝑀𝑁) + 𝑁))
6315negcld 7309 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℂ)
6463, 35npcand 7326 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((-𝑀𝑁) + 𝑁) = -𝑀)
6562, 64eqtrd 2072 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6665adantr 261 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6766oveq2d 5528 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = (𝐴↑-𝑀))
6860, 67eqtr3d 2074 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) = (𝐴↑-𝑀))
6968oveq1d 5527 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7057, 69eqtr3d 2074 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7170oveq2d 5528 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) / (𝐴𝑁))))
728, 4, 12, 55recdivapd 7782 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7372adantr 261 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7471, 73eqtrd 2072 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7548, 74eqtrd 2072 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
76 elznn0 8260 . . . . 5 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
7776simprbi 260 . . . 4 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7821, 77syl 14 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7942, 75, 78mpjaodan 711 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
80 expineg2 9264 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
811, 9, 15, 6, 80syl22anc 1136 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
8281oveq1d 5527 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
8313, 79, 823eqtr4d 2082 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894  cmin 7182  -cneg 7183   # cap 7572   / cdiv 7651  cn 7914  0cn0 8181  cz 8245  cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  expaddzap  9299
  Copyright terms: Public domain W3C validator