ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2negap GIF version

Theorem div2negap 7711
Description: Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
Assertion
Ref Expression
div2negap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵))

Proof of Theorem div2negap
StepHypRef Expression
1 negcl 7211 . . . . 5 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
213ad2ant2 926 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 ∈ ℂ)
3 simp1 904 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
4 simp2 905 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
5 simp3 906 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 # 0)
6 div12ap 7673 . . . 4 ((-𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵)))
72, 3, 4, 5, 6syl112anc 1139 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵)))
8 divnegap 7683 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵))
94, 8syld3an1 1181 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵))
10 dividap 7678 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1)
11103adant1 922 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1)
1211negeqd 7206 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = -1)
139, 12eqtr3d 2074 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 / 𝐵) = -1)
1413oveq2d 5528 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = (𝐴 · -1))
15 ax-1cn 6977 . . . . . . . 8 1 ∈ ℂ
1615negcli 7279 . . . . . . 7 -1 ∈ ℂ
17 mulcom 7010 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ) → (𝐴 · -1) = (-1 · 𝐴))
1816, 17mpan2 401 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · -1) = (-1 · 𝐴))
19 mulm1 7397 . . . . . 6 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2018, 19eqtrd 2072 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · -1) = -𝐴)
21203ad2ant1 925 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · -1) = -𝐴)
2214, 21eqtrd 2072 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = -𝐴)
237, 22eqtrd 2072 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = -𝐴)
24 negcl 7211 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
25243ad2ant1 925 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐴 ∈ ℂ)
26 divclap 7657 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
27 negap0 7620 . . . . 5 (𝐵 ∈ ℂ → (𝐵 # 0 ↔ -𝐵 # 0))
2827biimpa 280 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0)
29283adant1 922 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0)
30 divmulap 7654 . . 3 ((-𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (-𝐵 ∈ ℂ ∧ -𝐵 # 0)) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴))
3125, 26, 2, 29, 30syl112anc 1139 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴))
3223, 31mpbird 156 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  cc 6887  0cc0 6889  1c1 6890   · cmul 6894  -cneg 7183   # cap 7572   / cdiv 7651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652
This theorem is referenced by:  divneg2ap  7712  div2negapd  7780
  Copyright terms: Public domain W3C validator