ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 GIF version

Theorem dfbi2 366
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49.
Assertion
Ref Expression
dfbi2 ((φψ) ↔ ((φψ) (ψφ)))

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 109 . . 3 (((φψ) → ((φψ) (ψφ))) (((φψ) (ψφ)) → (φψ)))
21simpli 103 . 2 ((φψ) → ((φψ) (ψφ)))
31simpri 105 . 2 (((φψ) (ψφ)) → (φψ))
42, 3impbii 116 1 ((φψ) ↔ ((φψ) (ψφ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 96  wb 97
This theorem is referenced by:  dfbi  367  pm4.71  368  dfbi1  778  pm5.17  820  xor  823  albiim  1369  hbbi  1442  hbbid  1476  sbbi  1676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator