ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-12 GIF version

Theorem ax-12 1335
Description: Rederive the original version of the axiom from ax-i12 1331. Note that we need ax-4 1333 for the derivation, but the proof of ax4 1915 is nontheless non-circular since it does not use ax-12. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ax-12 z z = x → (¬ z z = y → (x = yz x = y)))

Proof of Theorem ax-12
StepHypRef Expression
1 ax-i12 1331 . . . 4 (z z = x (z z = y z(x = yz x = y)))
21ori 617 . . 3 z z = x → (z z = y z(x = yz x = y)))
32ord 618 . 2 z z = x → (¬ z z = yz(x = yz x = y)))
4 ax-4 1333 . 2 (z(x = yz x = y) → (x = yz x = y))
53, 4syl6 27 1 z z = x → (¬ z z = y → (x = yz x = y)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wo 605  wal 1266   = wceq 1324
This theorem is referenced by:  dvelimfALT  1911  ax11eq  1920  ax11indalem  1924  a12stdy4  1931  a12lem1  1932  ax17eq  1938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-in2 527  ax-io 606  ax-i12 1331  ax-4 1333
This theorem depends on definitions:  df-bi 108
  Copyright terms: Public domain W3C validator