ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal1 Unicode version

Theorem sbal1 1878
Description: A theorem used in elimination of disjoint variable restriction on  x and  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
Assertion
Ref Expression
sbal1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbal 1876 . . . 4  |-  ( [ w  /  y ] A. x ph  <->  A. x [ w  /  y ] ph )
21sbbii 1648 . . 3  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  w ] A. x [ w  /  y ] ph )
3 sbal1yz 1877 . . 3  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] A. x [ w  / 
y ] ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
42, 3syl5bb 181 . 2  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] [ w  /  y ] A. x ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
5 ax-17 1419 . . 3  |-  ( A. x ph  ->  A. w A. x ph )
65sbco2v 1821 . 2  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  y ] A. x ph )
7 ax-17 1419 . . . 4  |-  ( ph  ->  A. w ph )
87sbco2v 1821 . . 3  |-  ( [ z  /  w ] [ w  /  y ] ph  <->  [ z  /  y ] ph )
98albii 1359 . 2  |-  ( A. x [ z  /  w ] [ w  /  y ] ph  <->  A. x [ z  /  y ] ph )
104, 6, 93bitr3g 211 1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 98   A.wal 1241   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator