ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equveli Unicode version

Theorem equveli 1642
Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1641.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
equveli  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  x  =  y )

Proof of Theorem equveli
StepHypRef Expression
1 albiim 1376 . 2  |-  ( A. z ( z  =  x  <->  z  =  y )  <->  ( A. z
( z  =  x  ->  z  =  y )  /\  A. z
( z  =  y  ->  z  =  x ) ) )
2 ax12or 1403 . . 3  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
3 equequ1 1598 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  =  x  <->  x  =  x ) )
4 equequ1 1598 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
53, 4imbi12d 223 . . . . . . . 8  |-  ( z  =  x  ->  (
( z  =  x  ->  z  =  y )  <->  ( x  =  x  ->  x  =  y ) ) )
65sps 1430 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( ( z  =  x  ->  z  =  y )  <->  ( x  =  x  ->  x  =  y ) ) )
76dral2 1619 . . . . . 6  |-  ( A. z  z  =  x  ->  ( A. z ( z  =  x  -> 
z  =  y )  <->  A. z ( x  =  x  ->  x  =  y ) ) )
8 equid 1589 . . . . . . . . 9  |-  x  =  x
98a1bi 232 . . . . . . . 8  |-  ( x  =  y  <->  ( x  =  x  ->  x  =  y ) )
109biimpri 124 . . . . . . 7  |-  ( ( x  =  x  ->  x  =  y )  ->  x  =  y )
1110sps 1430 . . . . . 6  |-  ( A. z ( x  =  x  ->  x  =  y )  ->  x  =  y )
127, 11syl6bi 152 . . . . 5  |-  ( A. z  z  =  x  ->  ( A. z ( z  =  x  -> 
z  =  y )  ->  x  =  y ) )
1312adantrd 264 . . . 4  |-  ( A. z  z  =  x  ->  ( ( A. z
( z  =  x  ->  z  =  y )  /\  A. z
( z  =  y  ->  z  =  x ) )  ->  x  =  y ) )
14 equequ1 1598 . . . . . . . . . 10  |-  ( z  =  y  ->  (
z  =  y  <->  y  =  y ) )
15 equequ1 1598 . . . . . . . . . 10  |-  ( z  =  y  ->  (
z  =  x  <->  y  =  x ) )
1614, 15imbi12d 223 . . . . . . . . 9  |-  ( z  =  y  ->  (
( z  =  y  ->  z  =  x )  <->  ( y  =  y  ->  y  =  x ) ) )
1716sps 1430 . . . . . . . 8  |-  ( A. z  z  =  y  ->  ( ( z  =  y  ->  z  =  x )  <->  ( y  =  y  ->  y  =  x ) ) )
1817dral1 1618 . . . . . . 7  |-  ( A. z  z  =  y  ->  ( A. z ( z  =  y  -> 
z  =  x )  <->  A. y ( y  =  y  ->  y  =  x ) ) )
19 equid 1589 . . . . . . . . 9  |-  y  =  y
20 ax-4 1400 . . . . . . . . 9  |-  ( A. y ( y  =  y  ->  y  =  x )  ->  (
y  =  y  -> 
y  =  x ) )
2119, 20mpi 15 . . . . . . . 8  |-  ( A. y ( y  =  y  ->  y  =  x )  ->  y  =  x )
22 equcomi 1592 . . . . . . . 8  |-  ( y  =  x  ->  x  =  y )
2321, 22syl 14 . . . . . . 7  |-  ( A. y ( y  =  y  ->  y  =  x )  ->  x  =  y )
2418, 23syl6bi 152 . . . . . 6  |-  ( A. z  z  =  y  ->  ( A. z ( z  =  y  -> 
z  =  x )  ->  x  =  y ) )
2524adantld 263 . . . . 5  |-  ( A. z  z  =  y  ->  ( ( A. z
( z  =  x  ->  z  =  y )  /\  A. z
( z  =  y  ->  z  =  x ) )  ->  x  =  y ) )
26 hba1 1433 . . . . . . . . . 10  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  A. z A. z
( x  =  y  ->  A. z  x  =  y ) )
27 hbequid 1406 . . . . . . . . . . 11  |-  ( x  =  x  ->  A. z  x  =  x )
2827a1i 9 . . . . . . . . . 10  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( x  =  x  ->  A. z  x  =  x ) )
29 ax-4 1400 . . . . . . . . . 10  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( x  =  y  ->  A. z  x  =  y ) )
3026, 28, 29hbimd 1465 . . . . . . . . 9  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( ( x  =  x  ->  x  =  y )  ->  A. z
( x  =  x  ->  x  =  y ) ) )
3130a5i 1435 . . . . . . . 8  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  A. z ( ( x  =  x  ->  x  =  y )  ->  A. z ( x  =  x  ->  x  =  y ) ) )
32 equtr 1595 . . . . . . . . . 10  |-  ( z  =  x  ->  (
x  =  x  -> 
z  =  x ) )
33 ax-8 1395 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  y  ->  x  =  y )
)
3432, 33imim12d 68 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  =  x  ->  z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) )
3534ax-gen 1338 . . . . . . . 8  |-  A. z
( z  =  x  ->  ( ( z  =  x  ->  z  =  y )  -> 
( x  =  x  ->  x  =  y ) ) )
36 19.26 1370 . . . . . . . . 9  |-  ( A. z ( ( ( x  =  x  ->  x  =  y )  ->  A. z ( x  =  x  ->  x  =  y ) )  /\  ( z  =  x  ->  ( (
z  =  x  -> 
z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) ) )  <->  ( A. z
( ( x  =  x  ->  x  =  y )  ->  A. z
( x  =  x  ->  x  =  y ) )  /\  A. z ( z  =  x  ->  ( (
z  =  x  -> 
z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) ) ) )
37 spimth 1623 . . . . . . . . 9  |-  ( A. z ( ( ( x  =  x  ->  x  =  y )  ->  A. z ( x  =  x  ->  x  =  y ) )  /\  ( z  =  x  ->  ( (
z  =  x  -> 
z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) ) )  ->  ( A. z ( z  =  x  ->  z  =  y )  ->  (
x  =  x  ->  x  =  y )
) )
3836, 37sylbir 125 . . . . . . . 8  |-  ( ( A. z ( ( x  =  x  ->  x  =  y )  ->  A. z ( x  =  x  ->  x  =  y ) )  /\  A. z ( z  =  x  -> 
( ( z  =  x  ->  z  =  y )  ->  (
x  =  x  ->  x  =  y )
) ) )  -> 
( A. z ( z  =  x  -> 
z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) )
3931, 35, 38sylancl 392 . . . . . . 7  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( A. z ( z  =  x  -> 
z  =  y )  ->  ( x  =  x  ->  x  =  y ) ) )
408, 39mpii 39 . . . . . 6  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( A. z ( z  =  x  -> 
z  =  y )  ->  x  =  y ) )
4140adantrd 264 . . . . 5  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( ( A. z
( z  =  x  ->  z  =  y )  /\  A. z
( z  =  y  ->  z  =  x ) )  ->  x  =  y ) )
4225, 41jaoi 636 . . . 4  |-  ( ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) )  -> 
( ( A. z
( z  =  x  ->  z  =  y )  /\  A. z
( z  =  y  ->  z  =  x ) )  ->  x  =  y ) )
4313, 42jaoi 636 . . 3  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )  ->  (
( A. z ( z  =  x  -> 
z  =  y )  /\  A. z ( z  =  y  -> 
z  =  x ) )  ->  x  =  y ) )
442, 43ax-mp 7 . 2  |-  ( ( A. z ( z  =  x  ->  z  =  y )  /\  A. z ( z  =  y  ->  z  =  x ) )  ->  x  =  y )
451, 44sylbi 114 1  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629   A.wal 1241    = wceq 1243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator