HomeHome Higher-Order Logic Explorer
Theorem List (p. 3 of 3)
< Previous  Wrap >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  HOLE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Higher-Order Logic Explorer - 201-209   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremax11 201* Axiom of Variable Substitution. It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases.
A:∗       ⊤⊧[[x:α = y:α] ⇒ [(λy:α A) ⇒ (λx:α [[x:α = y:α] ⇒ A])]]
 
Theoremax12 202* Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint).
⊤⊧[(¬ (λz:α [z:α = x:α])) ⇒ [(¬ (λz:α [z:α = y:α])) ⇒ [[x:α = y:α] ⇒ (λz:α [x:α = y:α])]]]
 
Theoremax13 203 Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77.
A:α    &   B:α    &   C:(α → ∗)       ⊤⊧[[A = B] ⇒ [(CA) ⇒ (CB)]]
 
Theoremax14 204 Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77.
A:(α → ∗)    &   B:(α → ∗)    &   C:α       ⊤⊧[[A = B] ⇒ [(AC) ⇒ (BC)]]
 
Theoremax17 205* Axiom to quantify a variable over a formula in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of [Monk2] p. 113.
A:∗       ⊤⊧[A ⇒ (λx:α A)]
 
Theoremaxext 206* Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461.
A:(α → ∗)    &   B:(α → ∗)       ⊤⊧[(λx:α [(Ax:α) = (Bx:α)]) ⇒ [A = B]]
 
Theoremaxrep 207* Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory. Axiom 5 of [TakeutiZaring] p. 19.
A:∗    &   B:(α → ∗)       ⊤⊧[(λx:α (λy:β (λz:β [(λy:β A) ⇒ [z:β = y:β]]))) ⇒ (λy:(β → ∗) (λz:β [(y:(β → ∗)z:β) = (λx:α [(Bx:α) (λy:β A)])]))]
 
Theoremaxpow 208* Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory.
A:(α → ∗)       ⊤⊧(λy:((α → ∗) → ∗) (λz:(α → ∗) [(λx:α [(z:(α → ∗)x:α) ⇒ (Ax:α)]) ⇒ (y:((α → ∗) → ∗)z:(α → ∗))]))
 
Theoremaxun 209* Axiom of Union. An axiom of Zermelo-Fraenkel set theory.
A:((α → ∗) → ∗)       ⊤⊧(λy:(α → ∗) (λz:α [(λx:(α → ∗) [(x:(α → ∗)z:α) (Ax:(α → ∗))]) ⇒ (y:(α → ∗)z:α)]))
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200201-209
  Copyright terms: Public domain < Previous  Wrap >