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Abstract

BB′IW logic (or T→) is known to be D-complete. This paper shows that there are infinitely many
weaker D-complete logics and it also examines how certain D-incomplete logics can be made complete
by altering their axioms using simple substitutions.
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1 Introduction

The condensed detachment rule, first proposed by C. A. Meredith in Lemmon et al
[5], is a form of modus ponens preceded by ‘just enough’ substitution to make the
modus ponens possible. The substitution mechanism, for implicational formulas, was
a precursor to Robinson’s unification algorithm [8].

Roughly, a system of implicational logic is D-complete if the system with the same
axioms, but with condensed detachment (D) instead of modus ponens and substitu-
tion, has the same theorems.

To show that a logic is D-complete it is sufficient to show that all the substitution
instances of its axioms are deducible in the corresponding condensed logic (i.e. the
logic with rule D only).

It is well known that every logic with axioms only from the list:

(I) a → a
(B) (a → b) → (c → a) → c → b
(B′) (a → b) → (b → c) → a → c
(C) (a → b → c) → b → a → c
(K) a → b → a

is D-incomplete. (See Hindley and Meredith [3] and Kalman [4].)
Meyer and Bunder [6] showed that the system based on (B), (B′), (I) and

(W) (a → a → b) → a → b,

which we will call BB′IW logic (or T→), is D-complete. (See also [2] and [7]).
Here we show that D-completeness can be shown for a weaker logic, which we will

call M . This is based on (I) and the following:

(A1) (a → a) → (c → b → b) → c → (a → b) → a → b
(A2) (b → b) → (c → a → a) → c → (a → b) → a → b
(A3) (c → a → a) → (c → b → b) → c → (a → b) → a → b.
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We show that there is an even weaker interesting D-complete logic as well as an
infinite sequence of independent D-complete logics. We also comment on the relation
between (A1), (A2) and (A3) and the more standard axioms such as (B), (B′), (I)
and (W).

2 Condensed detachment

The formulation we give here for condensed detachment is equivalent to the more
standard one of, for example, Hindley and Meredith [3] but is simpler to state (see
[1]).

In all the work below, if P is a formula of logic, σi(P ) will represent the result of
a simultaneous substitution of formulas for propositional variables in P .

(Rule D). From P → Q and R conclude σ1(Q), where there are substitutions σ1

and σ2 such that

(1) σ1(P ) = σ2(R).
(2) Given (1) the number of occurrences of propositional variables in σ1(Q) is minimal.
(3) Given (1) and (2), the number of distinct propositional variables in σ1(Q) is

maximal.

Note 1. There may be no such σ1 and σ2, for example for (a → a) → a → a and
a → b → a, so the above rule does not always reach a conclusion.

Note 2. When we can obtain σ1(Q) from P → Q and R, we will say that we detach
R from P → Q to give σ1(Q).

We should also note that the axioms with names (I), (B) etc. are the principal types
of the combinators I, B, etc. If a combinator X has principal type P → Q and Y has
principal type R then XY , if it has a type, has principal type σ1(Q) obtained by D.
Thus XY can designate the proof of σ1(Q).

3 The D-completeness of M

The notation `M P or just ` P will represent “P is a theorem of M .”
Before proving our result we require 6 lemmas.

Lemma 3.1
` (a → a) → (a → a) → a → a.

Proof. Detach (I) from (A3) to obtain:

((a → a) → b → b) → (a → a) → (a → b) → a → b.

Detaching (I) from this gives the result.

Lemma 3.2
` (a → a) → a → a.

Proof. Detach (I) from lemma 3.1.

Lemma 3.3
If a formula P has no repeated propositional variables then

` P → P.
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Proof. By induction on the length of P .
If P is atomic, use (I).
If P is Q → R, where we have proved ` Q → Q and ` R → R in M , we detach

Q → Q from (A1) to give

` (c → b → b) → c → (Q → b) → Q → b.

Detach lemma 3.2 from this to obtain

` (b → b) → (Q → b) → Q → b.

Detaching R → R from this gives

` (Q → R) → Q → R

as required.
Note that if Q and R had a variable in common, condensed detachment would have,

at this last step, changed all occurrences of this common variable in Q to a distinct
new variable.
Lemma 3.4
If a formula P has no repeated propositional variables and d is a propositional variable
in P , then

` (d → d) → P → P.

Proof. By induction on the length of P .
If P is atomic, use lemma 3.2.
If P is Q → R, we have that d is in Q or R but not both.
Case 1: d is in Q. By the induction hypothesis

` (d → d) → Q → Q

and by lemma 3.3, ` R → R.
Detach R → R from (A2) to obtain

` (c → a → a) → c → (a → R) → a → R.

Now detach (d → d) → Q → Q to give

` (d → d) → (Q → R) → Q → R.

Case 2: d is in R. By the induction hypothesis

` (d → d) → R → R

and by lemma 3.3, ` Q → Q.
Detach Q → Q from (A1) to obtain

` (c → b → b) → c → (Q → b) → Q → b.

Detach (d → d) → R → R to give

` (d → d) → (Q → R) → Q → R
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Lemma 3.5
Suppose P is a formula with propositional variables a1, a2, . . . , an each of which ap-
pears exactly once in P . For 1 ≤ i〈j ≤ n let

Q = [ai/aj ]P.

Then ` Q → Q.

Proof. By definition ai appears twice in Q. Let R → S be the largest part of Q
where ai appears in R and in S.

As ai appears once in R and once in S, we have by lemma 3.4

` (ai → ai) → R → R

and
` (ai → ai) → S → S,

and detaching these from (A3) gives

` (ai → ai) → (R → S) → R → S.

Detaching (I) gives
` (R → S) → R → S.

Note now that in the induction step of lemma 3.3 we did not use the fact that
neither Q nor R there had repeated propositional variables, thus we can use the same
technique to obtain

` (T → R → S) → T → R → S

or
` ((R → S) → T ) → (R → S) → T ) etc.

until ` Q → Q is built up.

Lemma 3.6
For any formula P , ` P → P .

Proof. Let the variables of P be a1, . . . , an, where each ai occurs ki times. Let Q
be P , where for each i, the jth occurrence of ai is replaced by aij . All the variables
of Q are therefore distinct.

Now let

Q1 = [a12/a11]Q, P1 = Q1

Q2 = [a13/a12]Q, P2 = [a13/a12]P1

...
Qk1−1 = [a1k1/a1k1−1]Q, Pk1−1 = [a1k1/a1k1−1]Pk1−2

Qk1 = [a22/a21]Q, Pk1 = [a22/a21]Pk1−1

...
Qm = [ankn/ankn−1]Q, Pm = [ankn/ankn−1]Pm−1
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where m =
∑n

i=1(ki − 1).
Clearly Pm = P .
By lemma 3.5 for each k (1 ≤ k ≤ m) in P ,

` Qk → Qk.

We prove, by induction on k, ` Pk → Pk.
The k = 1 case is by lemma 3.5.
Now assume ` Pk → Pk and detach this from lemma 3.1 to obtain

` (Pk → Pk) → Pk → Pk.

Detach Qk+1 → Qk+1 from this to obtain

` Pk+1 → Pk+1.

Note that the pair of identical variables in Qk+1 causes the corresponding pair of
distinct variables in Pk to become identical in Pk+1.

Thus we have ` Pm → Pm i.e. ` P → P .
Theorem 3.7
If P is a substitution instance of Q and ` Q then ` P .

Proof. By lemma 3.6, ` P → P . Detaching Q from this gives the result.

4 Other D-complete logics

Theorem 4.1
Any logic having (I), (K) and (A3) as axioms is D-complete.

Proof. All the uses of (A1) and (A2) in the work above can be performed by (A3)
and (K) instead. We give one example of this:

In the proof of lemma 3.3 we have ` Q → Q, so by (K) we have

` c → (Q → Q).

Detaching this from (A3) gives the result obtained previously by detaching Q → Q
from (A1).

Theorem 4.2
The logic whose axioms are (I) as well as

(AA1) (a1 → a2) → (c → b1 → b2) → c → (a2 → b1) → a1 → b2

(AA2) (b1 → b2) → (c → a1 → a2) → c → (a2 → b1) → a1 → b2

(AA3) (c → a1 → a2) → (c → b1 → b2) → c → (a2 → b1) → a1 → b2

is D-complete as is the equivalent logic having (I), (B), (B′) and (AA3).

Proof. It can easily be checked that the above lemmas and theorem 3.7 can be proved
by the above alternatives and (I), so the logic of these is D-complete.

(AA1) can be derived from (B) and (B′) (proof: BB(B(B′B)(BBB′))). (B) can
also be derived from (AA1) by detaching (I) twice.

(AA2) can be derived from (B) and (B′) (proof: B(B′(BB′))(BB(BBB))). (B′)
can also be derived from (AA2) by detaching (I) twice.
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To derive (AA3) from (B) and (B′) we require at least one axiom that has at least
one propositional variable appear more than twice, such as any of (W),

(S) (a → b → c) → (a → b) → a → c or
(S′) (a → b) → (a → b → c) → a → c.

Proofs are:

B(BW){B(B′[B(BB)(BB)])[BB(BB′(BB′))]},
B(B′(BB))(BS(B(BB′)(BB′))) and

B(B′(B(BB)(BB)))(BS′(BB′)).

Thus:

Theorem 4.3
The logics with axioms (B), (B′), (I) and one of (S), (S′) or (W) are D-complete.

Logics such as these look simpler than M however they are stronger.

Theorem 4.4
The logic M is strictly weaker than BB′IS, BB′IW, BB′IS′ or BB′I(AA3) logic.

Proof. Theorem 4.2 and the discussion below it showed that BB′I(AA3) is a sub-
system of each of BB′IS, BB′IS′ and BB′IW. The axioms of M are substitution
instances of (I), (AA1), (AA2) and (AA3), so by theorem 4.2, M is a subsystem of,
or is, BB′I(AA3).

It is easy to show, by induction on the length of proof, that all theorems of M are
of the form

` P1 → P2 → · · ·Pn → Q → Q,

for some n ≥ 0. Thus (B) and (B′) cannot be derived so M is weaker than the 4
logics above.

Theorem 4.5
The logic with (B), (B′), (I) and

(I′) (a → a → b) → a → a → b

is D-complete.

Proof. The proof B[B′{B(BB)(BB)}][BB(BB′(BB′))] gives

(AA3′) `BB′ (c1 → a1 → a2) → (c2 → b1 → b2) → c2 → c1 →
(a2 → b1) → a1 → b2.

B(BI′)(AA3′) then gives

(AA3′′) `BB′I′ (c → a1 → a2) → (c → b1 → b2) → c → c → (a2 → b1)
→ a1 → b2
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using which the lemmas and theorem 3.7 can be proved as with (A3).

As (AA3′), and so (AA3′′), is a BB′I theorem, it follows that BB′I and BB′I(AA3′′)
are equivalent logics. In theorems of condensed BB′I (or BCI) logic propositional
variables must appear exactly twice each, thus (AA3′′) is not provable in condensed
BB′I logic. It therefore follows that condensed versions of equivalent logics may be
inequivalent.

M is not the weakest D-complete logic, this we show below.

Theorem 4.6
The logic M∗ with (I) and

(A1)∗ (a → a) → ((c → c) → b → b) → (c → c) → (a → b) → a → b

(A2)∗ (b → b) → ((c → c) → a → a) → (c → c) → (a → b) → a → b

(A3)∗ ((c → c) → a → a) → ((c → c) → b → b) → (c → c) → (a → b) → a → b

is D-complete and strictly weaker than M .

Proof. All the lemmas prior to it and theorem 3.7 can be proved as before.
As M is D-complete and (A1)∗, (A2)∗ and (A3)∗ are substitution instances of (A1),

(A2) and (A3) respectively, they are theorems of M .
It can easily be shown that all theorems of M∗ have the property that all proposi-

tional variables occur an even number of times in any theorem. This does not hold
for (A3), so (A3) is not a theorem of M∗.

Thus M∗ is strictly weaker than M .

An infinite set of independent D-complete logics can be obtained by considering
systems Mn with as axioms (I), (A1), (A2) and

(A3n) (c → a → a) → (c → b → b) → c → . . . → c → (a → b) → (a → b)

where c → . . . → c contain n ≥ 1 c’s. (Note that M1 ≡ M .)

Theorem 4.7
The systems Mn are mutually independent and weaker than BB′IW.

Proof. We first show that (A3m) is not derivable in Mn where n ≥ 3 and m〈n.
Consider the matrix

P

Q
P → Q 0 1 2 3 · · · n− 1 n

0 0 1 1 1 · · · 1 1
1 2 0 3 4 · · · n 0
2 3 0 0 0 · · · 0 0
3 0 0 0 0 · · · 0 0
...

n− 1 0 0 0 0 · · · 0 0
n 0 0 0 0 · · · 0 0

where 0 is the only designated value.
Clearly any formula of the form P → P (including (I)) has value 0.
Thus (A1) and (A2) can be evaluated as
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c 0 → (c → 0) → (c → 0)
0 0

and (A3m) as

c (c → 0) → (c → 0) → c → · · · → c → 0
1 2 3 2 0 m + 1 if m〈n
1 2 0 2 3 0 if m = n
2 3 0 3 0 3 if m = 1
2 3 0 3 0 0 if m〉1

other 0 0 0 0 0

The n-valued matrix for → validates all theorems of Mn if n〉2 but not all of those
of Mm if m〈n.

We now show that (A3m) is not derivable in Mn where m〉n ≥ 2.
Consider the matrix with designated value 0.

P

Q
P → Q 0 1 2 3 · · · n n + 1 n + 2

0 0 1 1 1 · · · 1 1 1
1 0 0 1 0 · · · 0 2 0
2 0 0 0 0 · · · 0 0 0
...

n + 1 0 0 0 0 · · · 0 0 0
n + 2 1 2 3 4 · · · n + 1 n + 1 0

(A1) and (A2) can be evaluated as before and (A3m) as

c (c → 0) → (c → 0) → c → · · · → c → 0
n + 2 1 0 1 0 n if m = n
n + 2 1 1 1 2 n + 1 if m〉n
other 0 0 0 0 0

When m〉n = 1, consider the matrix with designated value 0.

P

Q
P → Q 0 1 2 3

0 0 1 1 1
1 0 0 2 0
2 0 0 0 0
3 1 2 2 0

(A1) and (A2) can be evaluated as before and (A3m) as

c (c → 0) → (c → 0) → c → · · · → c → 0
3 1 0 1 0 1 m = n
3 1 2 1 2 2 m〉n

other 0 0 0 0 0

Thus all theorems of Mn are validated for n ≥ 1 but not all of Mm for m〉n.
Finally, all the theorems of M2 are BB′I theorems and (A3)(=A31), a theorem of

M1, is not.
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We therefore have that each system Mn has a theorem not provable in Mm if m 6= n,
so all the systems are independent.

We show that each system Mn is no stronger than BB′IW by stating a proof in
BB′IW of a formula of which (A3n) is a substitution instance. The D-completeness
of BB′IW means that (A3n) is also derivable (by methods such as the ones in this
paper). The proof for n〉2 is:

B(B′(BBn)){BB(BB′[B(Bn−1B′)(W[B(B′(BBn−2))(BBUn−2)])])},
where U1 = B′, Ui+1 = BB′(W(B{B′(BBi)}(BBUi))), B1 = B, Bi+1 = BBBi.

The fact that Mn for n〉2 is strictly weaker than BB′IW follows as in the proof of
theorem 4.4. As all the axioms of M2 are BB′I theorems, M2 is strictly weaker than
BB′IW. This result for M1 appears in theorem 4.4.

5 ‘Completing’ by substitution

The logic I(AA1)(AA2)(AA3′) is equivalent to BB′I logic; neither is D-complete.
However, as was shown in the proof of theorem 4.5, one simple (variable for variable)
substitution in (AA3′) (giving (AA3′′)) converts the logic into a D-complete one.
To convert BB′I logic into a D-complete logic, a single more complex substitution
instance of (B) must be added to (B), (B′) and (I). This allows the proof of (AA3′)
in the proof of theorem 4.5 to be converted into the proof of the other BB′I theorem
quoted there.

However, we prove below that I logic requires an infinite number of substitution
instances of its axiom to convert it into a D-complete logic and conjecture that the
same is true for the logics B, B′, BB′, BI and B′I.

We now look at theorems that can be generated using Rule D from substitution
instances of Axiom (I). For this we need to define unification.

Definition 5.1
U(P1, P2) is the unification of P1 and P2. This is the shortest formula σ1(P1) such that
for some σ2, σ1(P1) = σ2(P2) and of those one whose number of distinct propositional
variables is maximal.

In other words U(P1, P2) = σ1(P1) the result of detaching P2 from P1 → P1.
We define

U(P1, . . . , Pn) = U(U(P1, . . . , Pn−1), Pn).

We note that

U(U(P11, . . . , P1n1), . . . , U(Pk1, . . . , Pknk
)) =

U(P11, . . . , P1n1 , . . . , Pk1, . . . , Pknk
).

Lemma 5.2
If Q → Q is derived using only Rule D from P1 → P1, . . . , Pn → Pn as axioms then
each subterm of Q → Q is of the form U(R1, . . . , Rk) where R1, . . . , Rk are (sub)terms
of P1, P2, . . . , Pn.

Proof. The result clearly holds for any axiom (with U(Pi) ≡ Pi).
If Q → Q comes from detaching S → S from T → T then

(i) if T is a propositional variable
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Q = S

and the result holds by the induction hypothesis, and
(ii) if T ≡ T1 → T2 then

Q = U(T1, T2, S).

By the induction hypothesis

T1 = U(R1, . . . , Rk)
T2 = U(Ri, . . . , Rj) and
S = U(Rp, . . . , Rq)

where R1, . . . , Rk, Ri, . . . , Rj , Rp, . . . , Rq are (sub)terms of P1, . . . , Pn.
Therefore Q = U(R1, . . . , Rk, Ri, . . . , Rj , Rp, . . . , Rq) as required.

Lemma 5.3
The number of elements generated by unification from P1, . . . , Pn, #UE(P1, . . . , Pn) ≤
2n − 1.

Proof. The number of unifications U(Pi, Pj) for i 6= j is clearly at most n(n− 1)/2.
The number of unifications, for i, j, k different,

U(U(Pi, Pj), Pk) = U(U(Pi, Pj), U(Pi, Pk))
= U(U(Pi, Pj), U(Pj , Pk))
= U(U(Pk, Pi),U(Pj , Pk))

is at the most n(n− 1)(n− 2)/(1 · 2 · 3).
So

#UE(P1, . . . , Pn) ≤ n +
n(n− 1)

1 · 2 +
n(n− 1)(n− 2)

1 · 2 · 3 + · · ·+
n(n− 1)

1 · 2 + n + 1

≤ 2n − 1

Theorem 5.4
Only a finite number of theorems can be derived using Rule D only from axioms of
the form P1 → P1, . . . , Pn → Pn.

Proof. By lemma 5.2 any theorem derived from such axioms using Rule D is of the
form Q → Q where Q is a unification of (sub)terms of P1, . . . , Pn. The number of such
(sub)terms is finite so by lemma 5.3 the number of terms Q that can be generated by
unification is also finite.
Theorem 5.5
To transform condensed I-logic into I-logic an infinite number of substitution instances
of the axiom a → a are required.

Proof. By theorem 5.4.

Note that there are also logics where substitution instances of their axioms give no
new theorems other than those axioms themselves. An example is the logic with the
axiom

(a → a) → (a → a) → a → a.
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