MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   GIF version

Theorem invco 16254
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invco.o · = (comp‘𝐶)
invco.z (𝜑𝑍𝐵)
invco.f (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
invco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invco.o . . 3 · = (comp‘𝐶)
3 eqid 2610 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
4 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 invfval.x . . 3 (𝜑𝑋𝐵)
6 invfval.y . . 3 (𝜑𝑌𝐵)
7 invco.z . . 3 (𝜑𝑍𝐵)
8 invinv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 invfval.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
10 isoval.n . . . . . . . 8 𝐼 = (Iso‘𝐶)
111, 9, 4, 5, 6, 10isoval 16248 . . . . . . 7 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
128, 11eleqtrd 2690 . . . . . 6 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
131, 9, 4, 5, 6invfun 16247 . . . . . . 7 (𝜑 → Fun (𝑋𝑁𝑌))
14 funfvbrb 6238 . . . . . . 7 (Fun (𝑋𝑁𝑌) → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1513, 14syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1612, 15mpbid 221 . . . . 5 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
171, 9, 4, 5, 6, 3isinv 16243 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
1816, 17mpbid 221 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
1918simpld 474 . . 3 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
20 invco.f . . . . . . 7 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
211, 9, 4, 6, 7, 10isoval 16248 . . . . . . 7 (𝜑 → (𝑌𝐼𝑍) = dom (𝑌𝑁𝑍))
2220, 21eleqtrd 2690 . . . . . 6 (𝜑𝐺 ∈ dom (𝑌𝑁𝑍))
231, 9, 4, 6, 7invfun 16247 . . . . . . 7 (𝜑 → Fun (𝑌𝑁𝑍))
24 funfvbrb 6238 . . . . . . 7 (Fun (𝑌𝑁𝑍) → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2523, 24syl 17 . . . . . 6 (𝜑 → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2622, 25mpbid 221 . . . . 5 (𝜑𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺))
271, 9, 4, 6, 7, 3isinv 16243 . . . . 5 (𝜑 → (𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺) ↔ (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)))
2826, 27mpbid 221 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺))
2928simpld 474 . . 3 (𝜑𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺))
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 16239 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
3128simprd 478 . . 3 (𝜑 → ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)
3218simprd 478 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 16239 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
341, 9, 4, 5, 7, 3isinv 16243 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ∧ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
3530, 33, 34mpbir2and 959 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583  dom cdm 5038  Fun wfun 5798  cfv 5804  (class class class)co 6549  Basecbs 15695  compcco 15780  Catccat 16148  Sectcsect 16227  Invcinv 16228  Isociso 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-cat 16152  df-cid 16153  df-sect 16230  df-inv 16231  df-iso 16232
This theorem is referenced by:  isoco  16260  invisoinvl  16273
  Copyright terms: Public domain W3C validator